Effective Methods for the Computation of Bernstein-Sato polynomials for Hypersurfaces and Affine Varieties

نویسندگان

  • Daniel Andres
  • Viktor Levandovskyy
چکیده

This paper is the widely extended version of the publication, appeared in Proceedings of ISSAC’2009 conference (Andres, Levandovskyy, and Mart́ın-Morales, 2009). We discuss more details on proofs, present new algorithms and examples. We present a general algorithm for computing an intersection of a left ideal of an associative algebra over a field with a subalgebra, generated by a single element. We show applications of this algorithm in different algebraic situations and describe our implementation in Singular. Among other, we use this algorithm in computational D-module theory for computing e. g. the Bernstein-Sato polynomial of a single polynomial with several approaches. We also present a new method, having no analogues yet, for the computation of the Bernstein-Sato polynomial of an affine variety. Also, we provide a new proof of the algorithm by Briançon-Maisonobe for the computation of the s-parametric annihilator of a polynomial. Moreover, we present new methods for the latter computation as well as optimized algorithms for the computation of Bernstein-Sato polynomial in various settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bernstein-Sato ideals, associated strati cations, and computer-algebraic aspects

Global and local Bernstein-Sato ideals, Bernstein-Sato polynomials and Bernstein-Sato polynomials of varieties are introduced, their basic properties are proven and their algorithmic determination with the method of Briançon/Maisonobe is presented. Strati cations with respect to the local variants of the introduced polynomials and ideals with the methods of Bahloul/Oaku and Levandovskyy/Martín-...

متن کامل

A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials

In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...

متن کامل

Algorithms for Checking Rational Roots of $b$-functions and their Applications

Bernstein-Sato polynomial of a hypersurface is an important object with numerous applications. It is known, that it is complicated to obtain it computationally, as a number of open questions and challenges indicate. In this paper we propose a family of algorithms called checkRoot for optimized check of whether a given rational number is a root of BernsteinSato polynomial and the computations of...

متن کامل

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

Constructive $D$-module Theory with \textsc{Singular}

We overview numerous algorithms in computational D-module theory together with the theoretical background as well as the implementation in the computer algebra system Singular. We discuss new approaches to the computation of Bernstein operators, of logarithmic annihilator of a polynomial, of annihilators of rational functions as well as complex powers of polynomials. We analyze algorithms for l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010